Establishing safety limits for transcranial direct current stimulation.
نویسندگان
چکیده
The recent resurgence in the use of transcranial Direct Current Stimulation (tDCS) for electrotherapy and human cognition studies was motivated by studies demonstrating lasting change in cortico-spinal excitability following tDCS (Priori et al., 1998; Nitsche and Paulus, 2000, 2001) including at the University of Gottingen. Subsequent tDCS studies have largely adapted the Gottingen protocols including the use of relatively-large wet sponges with size nominally 25–35 cm 2 and currents of 1–2 mA applied for durations up to 20 min (resulting in charge densities of 343–960 C/m 2). Reproduction of these protocols across a wide range of applications and subjects (Nitsche et al. the need for continued vigilance in examining potential hazards, combined with the desire by clinicians to explore increasing intensity protocols and duration of after effects (Nitsche et al., 2004b; Fregni et al., 2006) warrants investigation of the thresholds and mechanisms of potential tDCS hazards. In developing safety guidelines for tDCS, several biophysical qualifications should be made. Firstly, if and what type of injury results from electrical stimulation is wholly dependent on the precise stimulation hardware and waveform applied; thus while one can draw general insights from a broad range of electrical safety studies (Agnew and McCreery, 1987; Merrill et al., 2005), it is neither accurate nor prudent to determine quantitative safety standards for tDCS from these reports. Moreover, tDCS itself represents a constellation of technologies and approaches (e.g. sponge salinity, electrode configurations, ramp waveform, intensity; Bikson et al., 2008) such that the safety standards may be tDCS protocol specific. Second, the injurious effects of tDCS on skin and brain are not necessarily linked, and should be considered independently from both the risk and mitigation standpoint. Acute pain and tissue damage of skin can further be distinguished, as should brain cognitive impairment versus brain tissue damage factors. The report in this edition by Liebetanz and colleagues in Gottin-gen is a valuable contribution towards this last factor. Brain tissue damage was accessed in a rat model following epicranial electrode stimulation (Liebetanz et al., 2009). By fixing the electrode directly on the cranium, and using a large counter electrode on the ventral thorax, the study design maximized the electrode current that crosses directly into the skull; thus in this model the peak current density in the rat brain may approach the current density at the electrode. Liebetanz and colleagues report that brain lesions were observed at a minimum cathodal electrode current …
منابع مشابه
Does the Longer Application of Anodal-Transcranial Direct Current Stimulation Increase Corticomotor Excitability Further? A Pilot Study
Introduction: Anodal transcranial direct current stimulation (a-tDCS) of the primary motor cortex (M1) has been shown to be effective in increasing corticomotor excitability. Methods: We investigated whether longer applications of a-tDCS coincide with greater increases in corticomotor excitability compared to shorter application of a-tDCS. Ten right-handed healthy participants received one se...
متن کاملW6: Transcranial Direct Current Stimulation Workshop
It is an Intensive 1-day course for introducing utilizing transcranial direct current stimulation (tDCS) in an applied format. This technique is a noninvasive brain stimulation that uses direct electrical currents over the head to stimulate specific parts of the brain which modulates neuronal activity. It has strong potentiality in the field of medical and neuroscientific research. Anodal stimu...
متن کاملNon-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance
During the past .. years, non-invasive .rain stimulation has .ecome an emerging .eld in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. .hereas transcranial magnetic stimulation has .een used e.tensively since more than t.o decades ago as a potential .neuromodulator., transcranial current stimulation .tCS. has more r...
متن کاملEffect of Transcranial Direct Current Stimulation on Auditory-Verbal Memory in Healthy Elderly
Background and purpose: Auditory-verbal memory decreases with age. One method to compensate this weakness is transcranial direct current stimulation. The current study investigated the effect of Anodal Transcranial Direct Current Stimulation on auditory-verbal memory performance of healthy elderly people. Materials and methods: In a randomized clinical trial, 42 healthy subjects with no histor...
متن کاملAttention-deficit/Hyperactivity, sustained attention, response inhibition, Mindfulness-based socio-emotional Learning, Transcranial Direct Current Stimulation.
This research aimed to compare the effectiveness of mindfulness-based socio-emotional learning program with/and without Transcranial Direct Current Stimulation on sustained attention and response inhibition in children with attention deficit/hyperactivity disorder. This research was a semi-experimental study with a pre-test and post-test design with a control group. The statistical population i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
دوره 120 6 شماره
صفحات -
تاریخ انتشار 2009